医療情報のデジタル化における現状と課題

― 日本における経緯と国際比較 ―

日本医師会総合政策研究機構
原 祐一

キーワード
医療情報のデジタル化、電子カルテ、データヘルス集中改革プラン、次世代医療基盤法、NDB、電子カルテ情報等の標準化、医療情報 1次利用・2次利用、電子政府調査、個人識別ナンバー

医療情報のデジタル化の流れは 1990 年代の電子カルテの誕生から加速している。
2000 年に IT 基本戦略が発表され、現在のデジタル化の基本的なグランドデザインが記載されている。しかし、スケジュールは遅れがちである。
その後も多くのプランが語られるが、実行されたもの、実行されていないものが混在している。
電子カルテの普及率は病院で 46.7%、診療所で 41.6%と半分に満たない。
病院の電子カルテシステムは周辺機器との接続が必要であること、参加人数が多くシステム構造が複雑なため、一部のベンダーに集約化されつつある。一方、診療所の電子カルテベンダーは極めて多い。
データヘルス集中改革プラン、次世代医療基盤法によるデータ活用、電子カルテ情報等の標準化が進められている。
国連による電子政府調査では、日本の電子政府達成度は世界各国で 14 位となっている。
各国は行政の効率化、データ活用、医療福祉、徴税などのために、国民の個人識別ナンバーの普及を進めている。
目次
はじめに .. 1
1. 医療情報デジタル化の歴史 .. 2
 1-1. 1999年以前の医療情報 .. 2
 1-2. 2000年〜2005年の医療情報 .. 2
 1-3. 2006年以降の医療情報 .. 8
2. 医療情報システムの現状 ... 12
 2-1. 電子カルテ普及率 .. 12
 2-2. 電子カルテのシェア ... 13
 2-3. 電子カルテ等の市場 ... 14
3. 今後の方針 .. 15
 3-1. 新たな日常にも対応したデータヘルスの集中改革プラン .. 15
 3-2. 次世代医療基盤法とNDBデータの利活用 ... 16
 3-3. 医療情報ネットワークの基盤に関するワーキンググループ .. 17
4. 医療情報の利活用の現状 ... 19
5. 国連による電子政府調査 ... 21
6. 各国の個人識別ナンバーと医療への活用 .. 25
 6-1. デンマーク .. 25
 6-2. 韓国 .. 27
 6-3. エストニア .. 28
 6-4. フランス ... 30
さいごに .. 31
はじめに

医療機関から発生するデータは膨大である。そのデータは個人の疾病や健康に関するものが多く、典型的な機微情報である。さらに、それらのデータと医師の見解をつなぎ合わせることで、将来発症する疾病や余命もある程度予測できるようになれば、各個人の命を握る情報ともなり得る。医療情報の収集と管理、医療情報の個々人への活用、集団における統計的利活用は将来の人類にとって最も重要な情報と言っても過言ではない。

1990年代から医療以外の分野においても、様々な情報が電子化されるようになり、政府も各種の法整備、ルールの整備を進めてきた。医療に関するデータもレセプト、カルテ、画像情報などから電子化されてきており、医療情報のルールの整備が行われてきている。この数年の経緯としては、医療情報は個人情報保護法、次世代医療基盤法などに基づいて管理・活用されている。

本報告において、本邦における医療情報のデジタル化の今までの経緯と現状、今後の計画、国連が発表している電子政府調査の概要、デジタル化が進歩している数か国の現状について報告を行う。
1. 医療情報デジタル化の歴史

1－1. 1999年以前の医療情報

医療情報のデジタル化の歴史は1970年代に遡る。当初は医事会計システムが稼働しはじめ、1970年代後半には臨床検査システム、オーダーエントリーシステムが稼働し始めた。1980年代にはレセプトコンピューターが普及し始めた。

1990年代には電子カルテが稼働し始めた。1994年に「保健医療分野の情報化にむけたグランドデザイン中間報告」が公表されている。1999年には電子カルテの指針である「法令に保存義務が規定されている診療録及び診療諸記録の電子媒体による保存に関するガイドライン」が出され、この中で電子カルテについて「真正性」、「見読性」、「保存性」の確保が必要との通知が出されている。

1－2. 2000年～2005年の医療情報

2000年に政府からIT基本戦略が発表され、その中で「電子政府」という単語が使われている。2001年に始まった国連による電子政府（e-Government）の国際的な調査と同時期にあたり、既にIT化は世界的な流れであったことが分かる。このIT基本戦略の中で1超高速ネットワークインフラ整備及び競争政策、2電子商取引ルールと新たな環境整備、3電子政府の実現、4人材育成の強化の4つ重点政策が示されている。また、2003年までに、すべての行政手続きをインターネット経由で可能な目標も示されている。2001年には「保健医療分野の情報化にむけてのグランドデザイン最終提言」が公表された。本提言において次の「医療の課題とその解決を目的とした情報化（概念整理）」が記載されている（表1）。

2001年には「保健医療分野の情報化にむけてのグランドデザイン最終提言」が公表された。本提言において次の「医療の課題とその解決を目的とした情報化（概念整理）」が記載されている（表1）。

1 法令に保存義務が規定されている診療録及び診療諸記録の電子媒体による保存に関するガイドライン等について https://www.mhlw.go.jp/web/t_doc?dataId=00ta6431&dataType=1&pageNo=1
2 IT基本戦略 平成11年 https://www.kantei.go.jp/jp/it/goudoukaigi/dai6/6siryou2.html
表 1 医療の課題とその解決を目的とした情報化（概念整理）（2001年）

<table>
<thead>
<tr>
<th>医療の課題</th>
<th>対応する情報技術を活用した手段</th>
<th>効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>情報提供</td>
<td>電子カルテシステム</td>
<td>(比較可能なデータの蓄積と活用)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 適切な情報管理・検索</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 目的に沿った情報の加工が容易</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(見やすく読みやすく分かりやすい情報)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 患者にとって理解しやすい診療の説明</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(医療従事者間での情報提供や診療連携)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 医療機関内、医療機関間、医療機関・他の関係機関との情報ネットワーク化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• セカンドオピニオンの際に初めの病院で検査した正確な患者情報を容易に参照可能</td>
</tr>
<tr>
<td>レセプト電算処理システム</td>
<td></td>
<td>• 健康指導などの保健事業に活用</td>
</tr>
<tr>
<td>質の向上</td>
<td>「根拠に基づく医療」支援</td>
<td>• 質の高い医学情報を整理・収集しインターネット等により医療従事者や国民に提供</td>
</tr>
<tr>
<td></td>
<td>(Evidence-based Medicine: EBM)</td>
<td>• 診療ガイドラインの作成支援・提供</td>
</tr>
<tr>
<td></td>
<td>電子カルテシステム</td>
<td>• 患者の診療データの一元管理・共有化、情報の解析等による新たな臨床上の根拠（エビデンス）の創出</td>
</tr>
<tr>
<td>遠隔診療支援</td>
<td></td>
<td>• 遠隔地の専門医による診断支援、治療指示等が受けられる</td>
</tr>
<tr>
<td></td>
<td>遠隔診療支援</td>
<td>• 在宅において安心できる療養の継続</td>
</tr>
<tr>
<td>効率化</td>
<td>電子カルテシステム</td>
<td>• フィルム等消耗品の使用量削減</td>
</tr>
<tr>
<td></td>
<td>オーダリングシステム</td>
<td>• 正確な物流管理による経費節減</td>
</tr>
<tr>
<td></td>
<td>レセプト電算処理システム</td>
<td>• 診療報酬の請求・審査支払事務の効率化</td>
</tr>
<tr>
<td></td>
<td>個人・資格認証システム</td>
<td>• 医療事務の効率化</td>
</tr>
<tr>
<td></td>
<td>物流管理システム（電子商取引）</td>
<td>• 医療資材物流に関する事務の効率化</td>
</tr>
<tr>
<td>安全対策</td>
<td>オーダリングシステム</td>
<td>• 診療情報の共有による伝達ミスの防止、人力・処方ミスのチェック</td>
</tr>
</tbody>
</table>
このグランドデザインにおいて、2006年には表2の環境を整えることが記載されている。

表2 保健医療分野の情報化にむけてのグランドデザインにおける環境と具体的効果

<table>
<thead>
<tr>
<th>環境</th>
<th>具体的効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>医療機関を選択する環境が整う</td>
<td>医療用語の標準化、公的な情報提供の整備などで患者が医療機関を選びやすくなる</td>
</tr>
<tr>
<td>国民が分かりやすい医療の情報が容易に手に入れられる</td>
<td>最新の医学データベースが整い、国民が正確な情報を手にすることが出来る</td>
</tr>
<tr>
<td>持ち時間の短縮</td>
<td>受診可能な時間の確認や予約システム</td>
</tr>
<tr>
<td>患者が分かりやすい説明を受ける</td>
<td>電子カルテを使って患者も理解しやすい仕組み作り</td>
</tr>
<tr>
<td>患者が最新・最良の医療情報に基づいた最適な医療を受けることができる</td>
<td>診療ガイドライン等の医学データベースの整備</td>
</tr>
<tr>
<td>専門医への紹介がスムーズになる</td>
<td>医療機関間のネットワークの整備により紹介・逆紹介が容易になる</td>
</tr>
<tr>
<td>より客観的なセカンドオピニオンが得られる</td>
<td>セカンドオピニオンをする医師も同じ医療情報を得ることが出来る</td>
</tr>
<tr>
<td>離れた地域の専門医の診療が受けられる</td>
<td>遠隔医療の発展により、離れた専門医の受診が容易になる</td>
</tr>
<tr>
<td>医療事故が防止される</td>
<td>人的ミスをシステムによって防ぐことが可能</td>
</tr>
<tr>
<td>医療従事者が患者と接する時間が長くなる</td>
<td>医療従事者の事務的作業や記録作業が短縮化</td>
</tr>
<tr>
<td>医療資材の購入価格が安くなる</td>
<td>流通の簡素化による価格の低下</td>
</tr>
</tbody>
</table>

また、2006年までに電子カルテの普及率を400床以上の病院で6割以上、診療所で6割以上達成するとの目標が示された。

保健医療分野の情報化にむけてのグランドデザインの策定について 平成13年

https://www.mhlw.go.jp/shingi/0112/s1226-1.html

4
同年（2001年）には日医 IT化宣言が出された。この中で互換性のある医療情報をやり取りできるようにする計画（ORCA、Online Receipt Computer Advantage）が発表された。日医が開発したプログラムやデータベースはすべて無料で公開することをうたっていた（表3）4。

4 日医 IT化宣言：ORCA Project：日医 IT化宣言（med.or.jp）
日本医師会は、医療現場のＩＴ（情報技術）化を進めるため、土台となるネットワークづくりを行うことを宣言します。まず各医療現場に標準化されたオンライン診療レセプトシステムを導入し、互換性のある医療情報をやりとりできるようにする計画（ORCA、Online Receipt Computer Advantage）を推進します。この計画のために日医が開発したプログラムやデータベースはすべて無償で公開されます。医療現場の事務作業の効率化を図り、コストを軽減させると同時に、誰もが自由に利用できる開放的なネットワークを形成し、国民に高度で良質な医療を提供することをめざします。

医は仁術であるばかりでなく、日々進化する「技術」系であり、またＩＴ時代を迎えて貴重な「情報」系にもなっています。しかしながらわが国の医療現場では、高度な医療機器に見合う情報系の整備が遅れています。医療機関の８割は毎月の診療報酬を請求するための専用コンピューター（通称レセコン）を導入していますが、他の病院、他の医療機器とはほとんど互換性がなく、データのやりとりもできない「ネットワーク不在」の状態です。これはレセプト（診療報酬明細書）の処理を紙の洪水にする無駄ばかりでなく、個々の医療情報の流を滞らすことによって、医療現場の非効率を招いたり、良質な医療の浸透を妨げかねません。このため日医は、ＩＴ時代の国民皆保険を支えるインフラストラクチャー（基盤）作りに自ら乗り出すことが必要と考えました。インフラとなる医療情報の標準化やネットワークづくりがこれまで進まなかったのは、情報を独占する特殊法人を抱えた行政側が消極的で、シェア争いや営利追求を優先せざるを得ないメーカーも自社システムを閉鎖的にきたなどの事情があったからです。このため日医のORCAは、医療情報交換の標準化を効率的に進めることを狙いとして、開発したプログラムや医療データベースを万人に無償で公開することにしました。プログラムの公開（オープンソース）は、日医とユーザーが結ぶ使用許諾契約に沿って行なわれ、基本システムが自律的に改良されていくとともに、周辺にそれを応用したベンチャービジネスが誕生する素地もできます。また多くのプログラマーが参加するため、否応なくシステムのセキュリティも高まり、特定企業に独占される恐怖がなくなります。もちろん、ユーザーによるプログラムの改良を認めるとはいえても、医薬品の併用禁止品目など人の生命そのものにかかわるデータベースについては、改変を禁ずるなどのガードを施してあります。こうした措置により、単に診療報酬請求などの事務処理を合理化するだけでなく、将来は懸案である「電子カルテ」開発などを促すことが期待できます。公共システムへのオープンソース制採用はフランスをはじめ幾つかの国にでも検討されていますが、その必要性は公共性の高い日本の医療においてはなおさらです。従来のような「先導者なきシステム普及」よりも、医療のプロ集団である日医が先頭に立ち、公共財としての医の情報系ネットワークづくりへ向けてイニシアチブを取る決意をいたしました。
2002年には「診療録等の外部保存に関するガイドライン」が公表された。このガイドラインにおいて電子カルテと医療情報の外部保存の指針、利点と問題点が示された（表4）。問題点には現在においても解決されていない事項が表記されている。また、この時点では「クラウド」という用語はまだ使われていない。

表4 医療情報の外部保存の利点と問題点

<table>
<thead>
<tr>
<th>利点</th>
<th>問題点</th>
</tr>
</thead>
<tbody>
<tr>
<td>・保存スペースの確保</td>
<td>・患者の情報が漏洩することへの危険性、万が一のときの対策・リスク分析・責任の所在の明確化が必須</td>
</tr>
<tr>
<td>・システム堅牢性の高い安全な保存場所の確保（セキュリティ対策向上や災害時の危機管理等）</td>
<td>・情報改ざんなどへの対処の負担（責任の所在・経路のセキュリティ・真正性保証など）</td>
</tr>
<tr>
<td>・電子カルテシステムを負担なく導入（ASP型電子カルテシステムなど）</td>
<td>・蓄積された情報を外部保存受託機関が独自に利活用することへの危惧</td>
</tr>
<tr>
<td>・保存コストの削減</td>
<td></td>
</tr>
</tbody>
</table>

2005年には「個人情報の保護に関する法律」が施行された。本法律が施行された背景としては次の7つが指摘される。①情報化社会の進展とプライバシー問題の認識、②個人情報保護の世界的潮流、③OECD理事会のプライバシー保護勧告、④地方公共団体の個人情報保護条例の増加、⑤EU一般データ保護規則（欧州連合指令）、⑥電子商取引におけるプライバシー保護の要請、⑦住民基本台帳法の改正による個人情報保護法制の要請。

当時の情報の電子的保存の発展、インターネットの進化、イーコマースの発展、国際化の推進などが背景にあったと思われる。

5 https://www.mhlw.go.jp/shingi/2004/07/s0729-6a.html#01
7 知る権利・アクセス権とプライバシー権に関する基礎的資料 基本人権の保障に関する小委員会平成15年shukenshi028.pdf (shugiin.go.jp)
更に2005年、「標準的電子カルテ推進委員会」の報告書が提出された。この中で、標準的電子カルテシステムを普及するために必要な基盤整備として以下の3点が示されている。

1. 医療用語・コードの標準マスターの普及と改善
2. 異なるシステム間での互換性確保や新旧システム間での円滑なデータ移行
3. 標準化を推進するためのインセンティブについて（※1）

※1インセンティブとして、以下の3項目が挙げられている。
①新規に導入する場合には、一定の強制力をもって、標準化されたシステムが導入されること
②既存資産がある医療機関においても合理的なコストで移行できるように制度等の整備を行うこと
③新たに標準化されたシステムが導入されることにより結果として大きな利点があるように、持続可能性等も踏まえた経済的支援策等の方策の検討

これらインセンティブは現在でも必要な内容であり、今後もこの方針を進めていく必要がある。

1-3. 2006年以降の医療情報

2006年にレセプトの電子的提出に対する指針が示されている。この指針では2011年からレセプトのオンライン提出を原則として義務化することが公表された。しかし、オンライン提出の義務化には依然、ハードルが高いとの意見や、政権交代の影響もあって、2009年の厚生労働省令改正において、レセプトのオンラインもしくは電子媒体（CD、USBメモリなど）による請求に変更された。そして2011年に電子媒体での請求が原則として義務化され、現在に至っている。2010年には政府の高度情報通信ネットワーク社会推進戦略本部（IT戦略本部）が「どこでもMY病院」構想を公表している。「新たな情報通信技術戦略」における医療分野の計画の一つであった。これは現在ではPHRと同じような意味を持つと思われ、今後の現実化が求められる。

2014年に医師資格証の発行が開始され、2016年には国民に対してマイナンバーカードの交付が始まった。2018年度には報酬改定にてオンライン診療が制度化され、また

※ 標準的電子カルテ推進委員会最終報告 平成17年（厚生労働省医政局研究開発振興課医療技術情報推進室）
https://www.mhlw.go.jp/shingi/2005/05/dl/a0517-4b.pdf

※「どこでもMY病院」https://www.kantei.go.jp/jp/singi/it2/dai55/sankou1_5_2.pdf
同年、医療分野の研究開発に資するための匿名加工医療情報をに関する法律、いわゆる次世代医療基盤法が施行された。

2016年に日医IT化宣言2016が公表された。この中で、安全なネットワークの構築、プライバシー保護、医療の質の向上、皆保険の維持などがうたわれている（表5）。

<table>
<thead>
<tr>
<th>表5 日医IT化宣言2016</th>
</tr>
</thead>
</table>
| ○ 日本医師会は、安全なネットワークを構築するとともに、個人のプライバシーを守ります。
 ・マイナンバー制度のインフラを活用した医療等ID制度を確立させる。
 ・医療等IDを活用して、国民・患者が安心できる地域医療連携を実現する。
 ・医療機関が安心・安全・安価に地域医療連携に活用できる医療専用ネットワークの構築を目指す。
| ○ 日本医師会は、医療の質の向上と安全の確保をITで支えます。
 ・患者の同意に基づいて収集した医療情報を研究・分析して、医療の質の向上及び患者の安全確保に努める。
| ○ 日本医師会は、国民皆保険をITで支えます。
 ・日医が開発するレセプト処理システムを電子カルテメーカーに提供、普及させることで、保険医療機関経営の原資となる診療報酬を請求するためのインフラ整備を行い、国民皆保険を堅持する。
| ○ 日本医師会は、地域医療連携・多職種連携をITで支えます。
 ・電子カルテのない医療機関でも、電子化された医療情報で地域医療連携を行うことができるようなツールを開発、提供する。
| ○ 日本医師会は、電子化された医療情報を電子証証技術で守ります。
 ・全ての医師に「医師資格証」を普及させる。
 ・保健医療福祉分野の電子認証局（HPKI）の事業発展と安定した運用を行う。
 ・「医師資格証」のユースケース拡大を図るとともに、身分証明書としての認知度も向上させる。

10 日医IT化宣言2016 (med.or.jp)
2020年に政府は「新たな日常にも対応したデータヘルスの集中改革プラン」を発表し、2021年よりマイナンバーカードによるオンライン資格確認が開始されている。

表6 医療情報等の推移（1999年以前）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>医事会計システムが稼働</td>
<td>レセプトコンピューターが普及</td>
<td>電子カルテシステムが稼働</td>
<td></td>
</tr>
<tr>
<td>臨床検査システムが稼働</td>
<td></td>
<td>オーダーエントリーシステムの普及</td>
<td></td>
</tr>
<tr>
<td>オーダーエントリーシステムが稼働</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 行政 | | 1994年 保健医療分野の情報化にむけてのグランドデザイン中間報告 |
| | | 1999年 診療録及び診療諸記録の電子媒体による保存に関するガイドライン |

ICTの進化	1975年 米Microsoft社設立	1980年 MS-DOS開発
1976年 Apple社設立	8-bitから16-bitへ	
1977年 AppleⅡ発売	1982年 NECがPC-9800発売	
1979年 NECがPC-8001発売	1984年 Macintosh発売	

| 行政 | | 1995年 Windows95発売 |
| | | 1999年 インターネット利用者割合人口の13% |
医療情報等の推移（2000年以降）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>医療情報</td>
<td>地域医療情報ネットワークが稼働</td>
<td>レセプト電子化</td>
<td>2021年 オンライン資格確認開始</td>
</tr>
<tr>
<td></td>
<td>2001年 日医 IT化宣言</td>
<td>電子カルテシステムが普及</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2014年 医師資格証発行開始</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2016年 日医 IT化宣言 2016</td>
<td></td>
</tr>
<tr>
<td>行政</td>
<td>2000年 政府の IT基本戦略，電子政府の構築</td>
<td>2010年 どこでも MY病院構想</td>
<td>2020年 データヘルス改革集中プラン</td>
</tr>
<tr>
<td></td>
<td>2001年 保健医療分野の情報化にむけてのグランドデザイン最終提言</td>
<td>2011年 レセプト電子媒体提出を原則義務化</td>
<td>2021年 デジタル庁発足</td>
</tr>
<tr>
<td></td>
<td>2002年 診療録等の外部保存に関するガイドライン</td>
<td>2018年 次世代医療基盤法</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005年 個人情報の保護に関する法律施行</td>
<td>2018年 オンライン診療の制度化</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005年 「標準的電子カルテ推進委員会」報告書</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICTの進化</td>
<td>2002年 3G通信開始</td>
<td>2012年 4G通信開始</td>
<td>2021年 5G通信開始</td>
</tr>
<tr>
<td></td>
<td>2007年 iPhone発売</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11, 12

12 「我が国における医療情報システムの歴史」より改変
2. 医療情報システムの現状

2-1. 電子カルテ普及率

2017年の電子カルテ普及率は、一般病院で46.7%（400床以上で85.4%、200〜399床で64.9%、200床未満で37.0%）、一般診療所で41.6%であった13（表7）。

※一般病院とは精神科病院、結核病院を除いたもの、一般診療所とは歯科のみの診療所を除いたもの

表7 電子カルテの普及率（2017年）

<table>
<thead>
<tr>
<th>年度</th>
<th>一般病院</th>
<th>病床規模別</th>
<th>一般診療所</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400床以上</td>
<td>200〜399床</td>
<td>200床未満</td>
</tr>
<tr>
<td>2008年</td>
<td>14.2%</td>
<td>38.8%</td>
<td>22.7%</td>
</tr>
<tr>
<td>2011年</td>
<td>21.9%</td>
<td>57.3%</td>
<td>33.4%</td>
</tr>
<tr>
<td>2014年</td>
<td>34.2%</td>
<td>77.5%</td>
<td>50.9%</td>
</tr>
<tr>
<td>2017年</td>
<td>46.7%</td>
<td>85.4%</td>
<td>64.9%</td>
</tr>
</tbody>
</table>

2001年の「保健医療分野の情報化にむけてのグランドデザイン最終提言」において、400床以上の病院における電子カルテ普及率を60%以上にする目標は2006年であったが、達成は2012年と目標からは6年の遅れであった。診療所も同様に60%以上の普及率を2006年までに達成する目標であったが、いまだに達成に至っていない。この原因を探る必要がある。

13 電子カルテシステム等の普及状況の推移

http://www.mhlw.go.jp/content/10800000/000482158.pdf
2-2. 電子カルテのシェア

電子カルテは病院と診療所では要求されるものが大きく違う。病院では入院と外来部門の両方を電子化しているところもあれば、一方を電子化し他方は紙カルテで運用しているところもある。無床診療所は外来診療に特化したものとなる。

病院では多職種連携が重要であり、さらに多数の検査機器システムや給食システムとの接続が必要である。扱う書類も多く、看護記録やリハ記録といったシステムも必要となる。このような複数のシステムとの接続が必要となるため、システム全体が複雑化している。

一方、無床診療所の電子カルテは外来のみであり、検査機器との接続を必要とするケースも少なく、あるいは接続する事も無いため、システム全体は単純な場合が多い。

その結果、病院の電子カルテメーカーは淘汰が進み、現在上位4社（富士通、CSI、ソフトウエアサービス、NEC）で全体の75%を占めている。一方、診療所の電子カルテは千差万別であり、各種診療科に特化した製品もあり、統一には程遠い状態である。

14 医療機器システム白書 2022
2-3. 電子カルテ等の市場

電子カルテをはじめとした病院・診療所での医療情報システムの市場規模は2020年度で約3,930億円であり（表8）、調剤薬局や介護施設等を含めた場合には約4,970億円と推計されている。

市場規模は右肩上がりであったが、2018年を頂上として減少傾向にある。この理由ははっきりしないが、今後の検討が必要である。

表8 医療機関情報システムの市場規模

<table>
<thead>
<tr>
<th></th>
<th>2016年</th>
<th>2017年</th>
<th>2018年</th>
<th>2019年</th>
<th>2020年</th>
</tr>
</thead>
<tbody>
<tr>
<td>医療機関情報システム</td>
<td>4,212億円</td>
<td>4,323億円</td>
<td>4,544億円</td>
<td>4,493億円</td>
<td>3,934億円</td>
</tr>
<tr>
<td>電子カルテシステム</td>
<td>1,517億円</td>
<td>1,616億円</td>
<td>1,797億円</td>
<td>2,080億円</td>
<td>1,600億円</td>
</tr>
<tr>
<td>オーダーリングシステム</td>
<td>275億円</td>
<td>285億円</td>
<td>265億円</td>
<td>277億円</td>
<td>215億円</td>
</tr>
<tr>
<td>医事会計システム</td>
<td>506億円</td>
<td>481億円</td>
<td>401億円</td>
<td>408億円</td>
<td>355億円</td>
</tr>
<tr>
<td>臨床検査部門システム</td>
<td>143億円</td>
<td>148億円</td>
<td>164億円</td>
<td>175億円</td>
<td>135億円</td>
</tr>
<tr>
<td>薬剤部門システム</td>
<td>14億円</td>
<td>12億円</td>
<td>13億円</td>
<td>13億円</td>
<td>11億円</td>
</tr>
<tr>
<td>放射線部門システム</td>
<td>87億円</td>
<td>77億円</td>
<td>93億円</td>
<td>52億円</td>
<td>52億円</td>
</tr>
<tr>
<td>看護・病棟システム</td>
<td>71億円</td>
<td>41億円</td>
<td>49億円</td>
<td>52億円</td>
<td>41億円</td>
</tr>
<tr>
<td>医用画像システム</td>
<td>387億円</td>
<td>351億円</td>
<td>338億円</td>
<td>260億円</td>
<td>327億円</td>
</tr>
<tr>
<td>地域連携システム</td>
<td>44億円</td>
<td>49億円</td>
<td>36億円</td>
<td>40億円</td>
<td>35億円</td>
</tr>
<tr>
<td>上記以外</td>
<td>253億円</td>
<td>254億円</td>
<td>240億円</td>
<td>199億円</td>
<td>175億円</td>
</tr>
<tr>
<td>保守・工事・教育</td>
<td>915億円</td>
<td>1,010億円</td>
<td>1,148億円</td>
<td>937億円</td>
<td>990億円</td>
</tr>
</tbody>
</table>

15

15医療機器システム白書2022
3. 今後の方針

3-1. 新たな日常にも対応したデータヘルスの集中改革プラン

2020年に政府は「新たな日常にも対応したデータヘルスの集中改革プラン」（以下、集中改革プラン）を発表しました。集中改革プランでは、3つの柱が提案されている。

1つ目は「全国で医療情報を確認できる仕組みの拡大」である。これは医療機関から発生する情報（電子レセプトや電子カルテの情報）を他の医療機関で参照できる仕組みであり、EHR（Electronic Health Record）を日本中に広げるという計画である。すでに地域医療連携システムとして一部の地域で稼働しているものもある。

2つ目は、「電子処方箋の仕組みの構築」で、オンライン資格確認システムを利用して医療機関と薬局を結ぶ仕組みである。

3つ目は、「自身の保健医療情報を活用できる仕組みの拡大」で、患者がスマホなどで、自らの健診データや処方内容などを確認できる仕組み、いわゆるPHR（Personal Health Record）の拡大である。

海外ではこの仕組みを既に実施している国もあり、日本は先進国の中でも医療情報デジタル化の遅れが指摘されている。集中改革プランは、日本の医療のデジタル化を推進させることを目標としている。これらがすべて稼働すると、重複検査や重複処方を回避できる、患者の既往歴がすぐに確認できる、紙情報をシステムに重複入力することを回避できるなど、医療の効率化が図れるとされている。さらに、国民が自己の健康情報を閲覧することで、ヘルスリテラシーが高まり、疾病予防に繋がることも期待されている。

政府は令和4年度末までに3つの柱のそれぞれの一部が稼働していることを目標としている。
3-2. 次世代医療基盤法とNDBデータの利活用

日本で発行されるレセプト（医科、歯科、調剤）は2009年より電子化が開始され、2011年には原則として義務化された。データ数は年間に約14～17億件であり、2020年12月末現在、206億件が格納されている。このデータベースをNDB（National Data Base）と言い、世界最大のヘルスケアのデータベースである。200億件超のレコードを持った医療情報のデータベースは世界中で日本以外にはない。この情報を活用し、ヘルスケアの発展に結びつけるという取り組みが始まっている。NDBは、情報は高齢者の医療の確保に関する法律を根拠とする匿名データベースであり、厚生労働省の専門委員会の審査を経た上で、第三者（研究機関、企業等）へ提供することが可能となっている。

NDBにはレセプト情報以外にも、特定健診・特定保健指導情報も格納されている。さらに保険診療における検査結果なども入るようになれば、その利用の幅は大きく広がっていくだろう。一方、NDBのデータ量は莫大であり、取り扱いが困難である。月を跨いだ本人突合にはハッシュ関数を使っているが、国保から社保への移動、結婚後の苗字の変更、後期高齢者医療保険への移動などによって、本人突合が出来なくなるケースも多く、NDBのデータ処理の経験が求められる。

NDBはあくまでもレセプトデータ（診療費の請求書）であり診療記録ではない。レセプト（請求書）とカルテ（診療録）がどのような一致性を持っており、どのような点で一致していないかを知らないと、重大な間違いを犯すかもしれない、取り扱いには十分に実績を積んだチームの協力が必要である。

次世代医療基盤法とは、医療分野の研究開発を促進するために、オプトアウト方式で医療情報を国が認める匿名加工医療情報作成事業者（以下、認定事業者）が扱うことを可能とする法律である。認定事業者と契約する医療情報取扱事業者（医療機関など）は、あらかじめ通知を受けた本人又はその遺族が停止を求める限り、匿名医療情報を認定事業者に提供することができる。そして、認定事業者は複数の医療機関などから収集した医療情報を名寄せしたうえで、個人を特定できない匿名加工医療情報を作成して、第三者へ提供することができる。

NDBによる悉皆的なレセプトデータ、次世代医療基盤法による電子カルテ等からのアウトカムデータを活用することで、医療の発展が期待される。
3-3. 医療情報ネットワークの基盤に関するワーキンググループ

厚生労働省「健康・医療・介護情報利活用検討会」の下に設置された標記ワーキンググループでは、電子カルテ情報等の標準化を進めている。標準化を進めるには人手もかかり、多額の費用が必要となるが、その費用を国費で賄うのであれば、国民にとってのメリットが必要となる。本ワーキンググループではメリットとして、ステークホルダーを4つに分け、それぞれについて以下のメリットを掲げている（表9）。

表9 医療情報標準化に期待されるメリット

<table>
<thead>
<tr>
<th>項目</th>
<th>期待される効果（メリット）</th>
</tr>
</thead>
<tbody>
<tr>
<td>国民</td>
<td>スマホ等で自らの医療情報を把握でき持ち運び可能
通院を要せず、タイムリーに検査結果等把握</td>
</tr>
<tr>
<td>医療機関</td>
<td>より正確な患者への問診を効率的に実施
日常的な文書（診療情報提供書等）を自動的に作成可能
他の医療機関の診療情報提供書等の取込作業が不要
システム関係経費の節減、診療所でも安価なクラウド版電子カルテを導入
データの利活用（二次利用）への貢献</td>
</tr>
<tr>
<td>保険者</td>
<td>重複検査の防止等、医療費の適正化
特定健康診（40歳以上・年1回）に加え、診療情報（検査結果等）を活用した保健指導</td>
</tr>
<tr>
<td>ベンダー</td>
<td>計画的かつ効率的なシステム開発が可能
カスタムオーダー対応からの解放（S E人材の有効活用）</td>
</tr>
</tbody>
</table>

[17] https://www.mhlw.go.jp/content/10808000/000871058.pdf
本ワーキンググループにおいて、標準規格の電子カルテを普及させるために、標準規格準拠の電子カルテのメリットを踏まえたコスト負担の軽減の検討を提言している。

具体的に、以下の3つの提言を行っている。

1	標準規格準拠（HL7 FHIR 規格でのデータ・情報の交換ができる）への対応を各社の電子カルテの基本共通機能（標準パッケージ機能）として実装すること
2	標準規格（HL7 FHIR 規格準拠の文書・医療情報のデータ・情報の交換仕様等）の更新や拡充に応じて電子カルテの基本共通機能（標準パッケージ機能）をパッケージとして更新・機能拡張すること
3	標準規格準拠の電子カルテの導入で、当該電子カルテの基本共通機能（標準パッケージ機能）が、随時、更新・機能拡張されることを踏まえ、当該機能への医療機関独自のカスタマイズを避けること

導入のコスト負担に対しては、中小規模医療機関を対象として以下の2つの提案をしている。

| 1 | 既に電子カルテが稼働している医療機関においては、標準規格準拠の電子カルテへの更新にかかる費用の一部を支援する |
| 2 | 電子カルテが未導入の医療機関においては、標準規格準拠の電子カルテの導入にかかる費用の一部を支援する |

①標準規格準拠の電子カルテ導入の推進策

https://www.mhlw.go.jp/content/10808000/000877227.pdf
4. 医療情報の利活用の現状

医療情報の利活用は1次利用と2次利用に分類されることが多い。1次利用とは、患者的治療において取得される医療情報をその患者の治療に係わる医療従事者が利用して、その患者のために使うことを言う。一方、医療情報の2次利用とは、直接的にはその患者の治療には関わりない利用のことを指す。具体的には、行政による公衆衛生活動や政策利用、大学・研究機関などの学術的利用、製薬メーカーなどの創薬・医療機器開発に関する利用、その他の企業によるヘルスケアサービスへの利用に分けられる（表10）。

表10 医療情報の2次利用

<table>
<thead>
<tr>
<th>利用目的</th>
<th>利用者</th>
<th>メリット受給者</th>
</tr>
</thead>
<tbody>
<tr>
<td>公衆衛生活動や政策利用</td>
<td>行政機関等</td>
<td>行政機関、国民</td>
</tr>
<tr>
<td>学術的利用</td>
<td>大学・研究機関</td>
<td>研究機関、有病者等</td>
</tr>
<tr>
<td>製薬メーカーなどの創薬・医療機器開発に関する利用</td>
<td>製薬メーカー等の営利企業</td>
<td>企業、有病者等</td>
</tr>
<tr>
<td>その他の企業によるヘルスケアサービスへの利用</td>
<td>その他企業</td>
<td>企業、国民</td>
</tr>
</tbody>
</table>

医療情報を利活用する際には、患者同意が必要となってくる。1次利用については、受診時に契約が成立しているという「黙示の同意」という考えがある。現状においても、同一医療機関内では一人の医師が患者から聞いた内容を他の医療者が閲覧することについては問題がないと考えられており、地域医療情報連携ネットワークにおいても、この考え方の延長線上にあるという考えである。しかしながら、無条件で地域のすべての医療関係者が患者の情報を閲覧できるとすれば大きな混乱が起きるだろう。なぜならば、秘密にしたい医療情報を市内のすべての医療機関の電子カルテで見ることができるとなると、近くの医療機関には受診したくないという人が現れるからである。地域全体で「黙示の同意」という考えが成立する条件としては、オプトアウトの徹底、情報の種類によってアクセスできる職種の制限、地域の医療機関全体で守秘義務の徹底、違反時の罰則設定、アクセスログの義務化などが考えられる。
2次的な利用については、その患者に直接のメリットはないため、利用する内容を明示したうえでの患者同意が前提となる。さらに、医療情報を2次利用する場合にもいくつかの段階があると考えられる。①患者氏名などが入り、個人を特定できる場合、②患者氏名を消しているが個人特定が可能かもしれない場合、③多くの患者の情報を統合し個人特定が不可能な場合。

①の個人が特定できる場合には同意は必須である。一方、②、③の場合にも①と同様の同意が必要かどうかについては今後の議論が必要である。

他方、安易に医療情報の2次利用を進めると、個人情報の流出につながりかねないという恐れがあるが、あまりにも厳密にすると2次利用が進まず、国際的に日本の医療の発展が遅れるという懸念が生じる。米国や欧州においては、医療情報の2次利用についての法整備が進められている①②。医療情報の利活用には改正個人情報保護法のさらなる議論が必要であるが、我々に残された時間はあまりないかもしれない。

①SUMMARY OF THE HIPAA PRIVACY RULE
https://www.hhs.gov/sites/default/files/privacysummary.pdf

② REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

20
5. 国連による電子政府調査

国連は2001年より国連加盟国の政府のデジタル化の調査を行っている。その報告書が「E・Government Survey 2020」（表11）として、出版されており、その概要を紹介する。本報告書の目的は各国政府のデジタル化支援とそのベンチマークとなることである。

表11 E・Government Survey 2020

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Japanese Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Global Trends in E・Government</td>
<td>電子政府の世界的流れ</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Regional E・Government Development and the Performance of Country Groupings</td>
<td>地域の電子政府の開発と国家群ごとの実績</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Regional Challenge and Opportunities</td>
<td>地域の取り組みと機会</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Local E・Government Development in Cities and Human Settlement</td>
<td>都市と定住地における地方政府の電子政府開発</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>E・Participation</td>
<td>電子的な社会参加</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Towards Data-Centric E・Government</td>
<td>データ中心の電子政府に向けて</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Capacities for Digital Government Transformation</td>
<td>電子政府変革の可能性</td>
</tr>
<tr>
<td>Addendum</td>
<td>E・Government during the COVID-19 pandemic: Policy insights and the way forward</td>
<td>補足 COVID-19 パンデミック中の電子政府</td>
</tr>
</tbody>
</table>

Executive Summary（エグゼクティブサマリー）

多くの国や自治体がデジタル政府戦略を進めており、10年前と比較して大きく進化しているところが多い。各国政府がデジタル変革を追求するために採っている新しいアプローチは以下の項目である（表12）。

表12 電子政府達成のためのアプローチ

1	プラットフォームとしての電子政府の提供
2	オンラインとオフラインのマルチチャネルの統合
3	デジタルサービスの迅速な開発
4	デジタル技術による社会参加
5	データを重視した国民へのアプローチの採用
6	行政サービスを提供するための人を中心としたデジタル能力の強化
7	スマートシティの開発におけるAIやブロックチェーンなどの新技術の使用

Global Trends in E-Government（電子政府の世界的流れ）

本調査では政府の電子化指標をEGDI（E-Government Development Index：電子政府開発指数）としており、3つのサブ指標から構成されている。

調査項目

<table>
<thead>
<tr>
<th>Online Services Index（OSI）</th>
<th>オンラインサービス指標</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Capacity Index（HCI）</td>
<td>人的能力指標</td>
</tr>
<tr>
<td>Telecommunications Infrastructure Index (TII)</td>
<td>通信インフラ指標</td>
</tr>
</tbody>
</table>
さらに、EGDIから世界中の国を4つに分類し、最も進んでいる国を Very High グループ、次を High グループ、中間的な国を Middle グループ、遅れている国を Low グループとしている（カッコ内は2018年度との比較）。

<table>
<thead>
<tr>
<th></th>
<th>数</th>
<th>変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>57か国 (+17か国)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>69か国 (-2か国)</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>59か国 (-7か国)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>8か国 (-8か国)</td>
<td></td>
</tr>
</tbody>
</table>
日本のデジタル化は遅れていると言われているが、本調査では全世界で14位であった。まずまず健闘していると言えなくもない。しかし、上位国は非常に進んでおり、国家戦略としてデジタル化を進めているため、本邦もこれらの国々を参考にして、国家全体でデジタル化を進めていく必要があるだろう。次ページよりデジタル化先進国の事例を記載する。

表 13 2020年の電子政府開発のランキング

<table>
<thead>
<tr>
<th>位</th>
<th>国名</th>
<th>電子政府発達指数 (2020)</th>
<th>オンライン指標</th>
<th>人的能力指数</th>
<th>通信インフラ指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>デンマーク</td>
<td>0.9758</td>
<td>0.9706</td>
<td>0.9588</td>
<td>0.9979</td>
</tr>
<tr>
<td>2</td>
<td>韓国</td>
<td>0.9560</td>
<td>1.0000</td>
<td>0.8997</td>
<td>0.9684</td>
</tr>
<tr>
<td>3</td>
<td>エストニア</td>
<td>0.9473</td>
<td>0.9941</td>
<td>0.9266</td>
<td>0.9212</td>
</tr>
<tr>
<td>4</td>
<td>フィンランド</td>
<td>0.9452</td>
<td>0.9706</td>
<td>0.9549</td>
<td>0.9191</td>
</tr>
<tr>
<td>5</td>
<td>オーストラリア</td>
<td>0.9432</td>
<td>0.9471</td>
<td>1.0000</td>
<td>0.8825</td>
</tr>
<tr>
<td>6</td>
<td>スウェーデン</td>
<td>0.9365</td>
<td>0.9000</td>
<td>0.9471</td>
<td>0.9625</td>
</tr>
<tr>
<td>7</td>
<td>イギリス</td>
<td>0.9358</td>
<td>0.9588</td>
<td>0.9292</td>
<td>0.9195</td>
</tr>
<tr>
<td>8</td>
<td>ニュージーランド</td>
<td>0.9339</td>
<td>0.9294</td>
<td>0.9516</td>
<td>0.9207</td>
</tr>
<tr>
<td>9</td>
<td>アメリカ合衆国</td>
<td>0.9297</td>
<td>0.9471</td>
<td>0.9239</td>
<td>0.9182</td>
</tr>
<tr>
<td>10</td>
<td>オランダ</td>
<td>0.9228</td>
<td>0.9069</td>
<td>0.9349</td>
<td>0.9276</td>
</tr>
<tr>
<td>11</td>
<td>シンガポール</td>
<td>0.9150</td>
<td>0.9647</td>
<td>0.8904</td>
<td>0.8899</td>
</tr>
<tr>
<td>12</td>
<td>アイスランド</td>
<td>0.9101</td>
<td>0.7941</td>
<td>0.9525</td>
<td>0.9838</td>
</tr>
<tr>
<td>13</td>
<td>ノルウェー</td>
<td>0.9064</td>
<td>0.8765</td>
<td>0.9392</td>
<td>0.9034</td>
</tr>
<tr>
<td>14</td>
<td>日本</td>
<td>0.8989</td>
<td>0.9069</td>
<td>0.8684</td>
<td>0.9223</td>
</tr>
</tbody>
</table>
6. 各国の個人識別ナンバーと医療への活用

EHR、PHR などの医療情報の１次利用、またさらに進んで２次利用を行うためには、何らかの番号による管理が必要となる。本邦においては、2021 年よりオンライン資格確認において、個人単位化された被保険者番号の履歴管理のしくみを利用した個人識別が開始されている。他国において、個人を識別する番号がどのようにになっているか、デジタル化をどのように進めているかを報告する。

6-1. デンマーク

国連電子政府順位で１位のデンマークの個人識別ナンバーは CPR（Det Centrale Personregister：Central Person Register）と言われ、1968 年の市民登録法によって導入された。CPR ナンバーは 10 桁であり、社会保障番号、氏名、住所、かかりつけ医、婚姻状況（結婚歴、既婚・未婚・離婚、未亡人、寡婦、登録パートナー、以前に登録されたパートナーなど）、出生地、市民権の有無、所属教会、所属自治体などが記載されている。CPR 登録内容へのアクセスは CPR 法によって公共機関や民間企業にも一部の情報が条件付きで公開される。

医療、福祉、銀行口座開設、賃貸物件の契約、就職、起業、融資などは CPR ナンバーがないと受け付けられない。かかりつけ医を受診する際も CPR ナンバーが必要となる。入院する際にも氏名とともに CPR ナンバーの確認がある。行政サービスは、ほぼオンライン化されているが、これを受ける際にも CPR ナンバーが必要である。

新型コロナウィルス感染症の検査の際にも CPR ナンバーを利用し、検査結果をスマートフォンのアプリに送信する。陽性の場合には、療養の場所など今後の身の振り方もアプリに送信される。

ロックダウン時の企業や個人事業主への補償金の申請にも CPR ナンバーを利用。企業には事業者ナンバーとして CVR があり、CPR どちらかを入力すると、数日で証金は振込まれる。

デンマークの国民登録制度は 1968 年に財産管理や税金支払いのために開始されている。個人情報の流出は大きな問題であるため、情報管理については、法律で CPR に登録されている個人情報の閲覧を誰がどのように条件で行ってよいかを明記している。誰（政府、自治体、民間企業等）が閲覧権を持っているかを個人が確認することも可能で
ある22。

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
<td>約 581 万人</td>
</tr>
<tr>
<td>面積</td>
<td>4.3 万平方キロ</td>
</tr>
<tr>
<td>一人当たり GDP</td>
<td>60,692 ドル（2018 年 IMF 報告）</td>
</tr>
<tr>
<td>通貨</td>
<td>デンマーク・クローネ</td>
</tr>
</tbody>
</table>

22 https://www.borger.dk/samfund-og-rettigheder/Folkeregister-og-CPR/Det-Centrale-Personregister-CPR
6-2. 韓国

国連電子政府順位で2位の韓国の個人識別ナンバーは「住民登録番号」と呼ばれ、13桁の番号で構成されている。本制度は1962年に制定されていたが、1968年の北朝鮮スパイが大統領府を襲撃し朴正煕大統領を暗殺しようとした事件をきっかけに、個人を特定する目的から義務化された。

「住民登録証」は17歳以上の国民は発給を受ける義務があり、住民登録番号、氏名、現住所、発行役所名、指紋などが登録されている。

住民登録番号は税、福祉、医療、教育、兵役などで使用される。医療費控除は自動的に還付される。携帯電話契約、銀行口座開設、ネットの契約、ネットショッピング、ネットゲームなどにも、本人確認としてこの住民登録番号が必要となる。

政府が作るポータルサイトは「政府24」と呼ばれ、政府サービスのほぼすべてがネット上で行えるようになっている。政府24上において、行政への届け出や証明書発行、情報閲覧（転入届、住民票、納税証明書、予防接種証明書、大学の成績証明書、各種学校の卒業証明書、健康保険や年金の納付状況など）が住民登録番号を利用して、オンライン上で可能となっている。

コロナ支援金については、世帯主あてに約9万円/人の支援金があり、銀行もしくはクレジットカード会社のHPにアクセスし、住民登録番号を入力すると口座に振り込まれる仕組みである。申請開始から約1か月でほぼ全世帯に支給が行われた。

<table>
<thead>
<tr>
<th>基本情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
</tr>
<tr>
<td>面積</td>
</tr>
<tr>
<td>一人当たりGDP</td>
</tr>
<tr>
<td>通貨</td>
</tr>
</tbody>
</table>

政府24ポータルサイト：https://www.gov.kr/portal/main
6-3. エストニア

国連電子政府順位で3位のエストニアの個人識別ナンバーは「個人識別コード：Personal Identification Cord：PIC」と呼ばれ、11桁の番号から構成される。2002年よりPICは開始されているが、その理由として以下の2点をエストニア政府は説明している。①旧ソ連から独立し資源も外貨もない中で外貨を稼ぐためにICT立国を国策としたこと、②万が一ロシアに再占領されてエストニア国民が全世界に散らばっても、e・エストニア国を成立させるため。

2002年から16歳以上の全国民にIC付きカードが配布されたが、2016年からはスマートフォンのアプリも利用可能となっている。

エストニアのデジタル政府の管理はX-ROADというシステムで管理されている24。X-ROADは複数の他の国でも利用されており、昨年からはドイツの一部の州で電子処方箋の実証実験が開始されている25。

エストニアの病院や診療所では、複数の種類の電子カルテが使われており、また紙カルテの医師もいる。しかし、医師はX-ROADにある医療情報システムに必要事項を定期的に入力する義務がある。その情報を他の医療機関でも参照することが可能となっており、電子カルテそのものが共通化しているわけではない。

ほぼすべての行政サービス（結婚届、離婚届、不動産売買以外）はオンラインで可能であり、医療機関受診、電子処方箋、国政選挙、福祉、税、運転免許などで利用されている。民間での利用も可能で、一般的な商取引、ネットショッピング、商店でのポイント付与などにも利用されている26。また、会社の設立もオンラインで行われており、30分で新会社の登記ができるとのことである。

24 https://x-road.global/
26 総務省情報流通局資料：https://www.soumu.go.jp/main_content/000731090.pdf
<table>
<thead>
<tr>
<th>基本情報</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
<td>133万人</td>
</tr>
<tr>
<td>面積</td>
<td>4.5万平方キロ</td>
</tr>
<tr>
<td>一人当たりGDP</td>
<td>22,290ドル（2020年IMF報告）</td>
</tr>
<tr>
<td>通貨</td>
<td>ユーロ</td>
</tr>
</tbody>
</table>
6-4. フランス

フランスの個人識別ナンバーは NIR（numero d'inscription au registre：登録番号）と呼ばれ、15桁の番号から構成されている。フランス人およびフランス領に住む外国人に付与される。登録番号は医療、福祉、税、労働、司法、公的統計、国勢調査、教育などで使用される。登録番号を使用できる機関は「情報と自由に関する全国委員会」の許可を受けた機関のみである。

雇用契約時、医療保険、家族手当支給などで使用されることが多い。フランスの医療保険は償還払制度であり、いったん全額を医療機関で支払い、その後に疾病金庫等から償還を受ける方法である。以前は領収書と必要書類を郵便で送り償還を受けていた。現在のカルト・ビタル（IC付き健康保険証、登録番号と紐付けされている）を利用することで、書類の郵送はなくなり、償還も早く受け取ることが出来るようになった。

医療情報の共有化については2004年から計画が進められていたが、2018年に本計画の実行者が全国疾病金庫に移り、DMP（共有医療記録：Dossier Medical Partagé）として実働が始っている。その間に500億ユーロ以上の資金が使われた。現在はDMPポータル内にPHRを構築することが可能となっている。患者本人と患者が決めた医療職者が医療情報（病歴、検査結果、処方、リビングウイル、緊急時の連絡先など）を入力することができる。フランスでは戦後のベビーブーム時代生まれの医師が大量に退職をはじめ、患者は自分の「かかりつけ医」が変更になることが増えてきた。また、高齢になると住居を変える人が多く、医療情報の引継ぎができないという事態が起きてきたために、DMPが必要になってきた。

<table>
<thead>
<tr>
<th>基本情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
</tr>
<tr>
<td>面積</td>
</tr>
<tr>
<td>一人当たりGDP</td>
</tr>
<tr>
<td>通貨</td>
</tr>
</tbody>
</table>

28 日医総研海外駐在研究員 奥田七峰子氏より
さいごに

本邦の医療情報の電子化の歴史は約60年に及び、徐々に進化してきた。歴史を俯瞰してみると、2000年から2005年に大きな進捗があり、現在のデジタル化のグランドデザインが作られた。一方、電子カルテの普及や医療情報の標準化は予定通りには進んでおらず、この理由を解明、対処していく必要がある。中小病院や診療所においてデジタル化が進みにくい理由に、システム構築費用の問題があることは2005年当時から指摘されていた。デジタル化を進める原資を誰が負担するのかという問題は解決しなければならない重要な課題である。また、医療情報の標準化が進みにくい理由も検証が必要である。

現在はオンライン資格確認、EHR、PHR、電子処方箋、ビッグデータ解析などが進められている。デジタル技術の加速度的な進歩を考えると、我々が現在考えているような形ではない進化が起きるかもしれない。10年後、20年後にどのような形になっていくか楽しみでもある。

国連による電子政府調査においては、日本は世界各国の中で政府の電子化の順位は14位である。コロナ禍において、日本のデジタル化の遅れが様々な指摘されているが、まずまず健闘しているとも言えるのではないだろうか。世界各国はそれぞれの事情があり、進んでいる分野、遅れている分野などさまざまである。今後は、自国の現状を客観的に検討し、それに合った対策を講じていく必要がある。

デジタル化に関して、いくつかの国の取り組みを紹介した。政府が行うデジタル化には国民の識別ナンバーが必要となるため、各国の個人識別ナンバー制度を取り掛かりとして、デジタル化を調査した。個人識別ナンバーの始めは各国各様であるが、行きつくる方向は同じように思える。政府のデジタル化の発展は、人口規模や一人当たりGDPに影響を受ける点もあるが、必ずしも影響を受けない場合もあることが興味深い。

デジタル化により世の中は大きく変化している。最大の小売はイーコマースとなり、音楽や映像もネット配信が当たり前になっている。今後は医療界も大きな変化を迫られるであろうが、我々もその流れに対応していく必要がある。